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Abstract: Subsea processing of oil/gas is performed by production system facilities, which are 

linked into a complete system by subsea connectors. High reliability and long service life of the 

connectors, defined by strict requirement of deepwater oil fields, raise the challenge of the design 

of the structure components to which the ASME-VIII code has been applied. The theoretical design 

problems of the main parameters of subsea connector’s hub structure are detailed in this paper in 

comparison with the shortage of the ASME design method. Therefore, a new analytical model is 

developed, which is called Stress Analytical Method (SAM). The hub structure is separated into 

two parts, i.e. a thick-walled cylinder and a hollow annular plate, and axisymmetric bending 

deformation problems of the thick-walled cylinder are proposed. The geometric equations, the 

constitutive equations, the physical equations and the equilibrium equations are developed to obtain 

the displacement analytical solution of the hub structure’s thick-walled cylinder. The deformation 

continuity relationships between the thick-walled cylinder and the hollow annular plate are also 

established, and the analytical solutions of internal forces, displacements, rotation angles and stress 

components are acquired accordingly. The accuracy of SAM is investigated by comparing stress 

calculation results with Finite Element Method (FEM) results. A case study is carried out to 

compare SAM with ASME design method. 
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1 Introduction 

The increase of oil and gas production comes from offshore fields in the globe in the past 

decades, and about 90% of the increase is from the deepwater. Subsea production systems (SPS) 

including subsea pipelines and risers are the main equipment and facilities for the development of 

deepwater oil and gas fields, and their applications to deeper and remoter waters as well as arctic 

areas are challenging the scientists and engineers, especially in increasing safety and reliability. It is 

always the main concern of the industry to reduce the capital expenditures (CAPEX) and 



operational expenditures (OPEX) of the deepwater fields by developing new technologies of subsea 

production systems. The technologies cover the whole period of life of the systems from initiation 

of concepts to design, manufacture, testing, transportation, installation, monitoring and inspection, 

maintenance, repair and decommissioning. Any technology shall aim for the maximum oil and gas 

production, the minimum environmental impact, the minimum risk to assets and personnel, the 

maximum profit and the highest safety of the subsea systems, and their advances are progressing 

each year.  

A subsea production system consists of the seabed wellhead, subsea production X-tree, subsea 

tie-in to flowline system, and subsea equipment and control facilities to operate the well, as shown 

in Fig. 1. It can range in complexity from a single satellite well with a flowline linked to a fixed 

platform, FPSO (Floating Production, Storage and Offloading), or onshore facilities, to several 

wells on a template or clustered around a manifold that transfer to a fixed or floating facility or 

directly to onshore facilities. As the oil and gas fields move further offshore into deeper water and 

deeper geological formations in the quest for reserves, the technology of drilling and production has 

advanced dramatically. The latest subsea technologies have been proven and formed into an 

engineering system, namely, the subsea production system, which is associated with the overall 

process and all the equipment involved in drilling, field development, and field operation. More 

detailed information about subsea production system can be obtained in the report (Duan, et al. [1]). 

 

Fig. 1  Subsea production system (Duan, et al. [1]) 

The subsea connector, located on the end of the jumper, is the key connection facility in the 

subsea production system (shown in Fig.2). The main function of the subsea connector is to achieve 

locking and sealing between two different subsea facilities. If the sealing fails, oil and gas leakage 

accidents will occur. This will impact the safe operation of subsea production system. In the former 

study (Zhang et al., [2]), the sealing working principle of subsea connectors has been expressed, 

and the theoretical design method of the gasket, a key component of subsea connectors, has been 

developed. In the present work, the theoretical design method of the hub, another key component of 



subsea connectors, will be investigated. On the one hand, the hub component directly contacts with 

the gasket component and provides a compressive load on the gasket component to achieve sealing 

performance. On the other hand, the hub component contacts with the outer claw components, and 

cooperates with the claws to lock the locking mechanism. The design of hub component is 

constrained by the sealing performance. Meanwhile, the design of hub component will influence 

the locking performance of the subsea connector. Therefore, it will be of great significance to study 

the design methods of the structural parameters of the hub component. Among all the structural 

parameters of the hub component, the wall thickness dimension is the most significant. The reason 

is that the hub structure can be considered as the joint of two parts, i.e. a thick-walled cylinder and 

a flange ring plate, and the change of the two parts’ wall thickness dimension seriously influences 

the global size of hub component. In order to ensure enough structural strength, the wall thickness 

dimension is designed very large in some cases, which will increase the global size of hub structure 

and make the whole structure of subsea connector much larger and heavier. Therefore, it is 

necessary to investigate the design methods for such key parameters of wall thickness of 

thick-walled cylinder and flange ring plate.  
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Fig. 2  Subsea production system and subsea connector 

As a central part of the subsea connector, the typical locking system is composed of claws, an 

actuator ring, a gasket ring, upper hub and lower hub, as shown in Fig.3. It can be seen that the 

upper hub structure plays a key role in defining the geometrical dimensions of other components of 

the whole connector system, and the wall thickness of both the thick-walled cylinder and the flange 

ring plate shall be first set. Fig.4 presents the loading conditions of the hub structure respectively in 

locking and unlocking states. Zhang et al. [2] made a detailed presentation on the geometrical 

relationships and load transmission from the components in locking and unlocking conditions. 

Appendix A shows the calculation of such loads which are the basis of the derivation of the 

equations of this paper. 
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(a) unlocking state                        (b) locking state 



Fig. 3  A schematic presentation of the subsea connector locking system 
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(a) Preloading state                   (b) Operation state 

Fig. 4 Load conditions of the hub structure in two states 

The ASME Boiler and Pressure Vessel VIII 2 [3] code is the general design method for the 

pressure vessel flange structure, where various sealing connection mechanisms have been 

elaborated, such as flat gasket sealing, double-cone gasket sealing, Uhde sealing, Casale sealing 

and clamp sealing. The design method is to calculate the stress components on critical sections and 

to make a judgement whether the design parameters meet the strength criteria or not. The hub 

structure of the subsea connector is similar to the flange of the clamp connection mechanism [4], 

and the terminal of the flange structure presents an outward expansion tendency under the 

combined actions of axial loads, axial moments and radial loads. As a result, an axisymmetric 

bending deformation takes place in the flange structure. The advantage of ASME design method is 

that the mechanics analytical model and the solution process are easy to be conducted. However, 

the biggest disadvantage is the approximations of the analytical model, which assumes the flange as 

a beam structure and neglects the continuous deformation consistent condition in the joint section 

between hub thick-walled cylinder and flange ring plate. Therefore, it is inevitable to cause errors 

when using the ASME design method to design the hub structure, and a more precise method 

should be developed to present the stress discontinuity.  

The flange stress analysis method is the most widely used method to design the flange. In this 

method, the flange is separated into three parts: a hollow cylinder, the neck of the flange, and a ring 

[5]. The hollow cylinder, the neck of the flange and the ring are taken respectively as a thin-walled 

cylinder shell with constant thickness, a thin-walled cylinder shell with varying thickness, and a 

circular plate with a central hole. The axisymmetric bending equilibrium equations, the constitutive 

equations, the geometric equations and the boundary condition equations of the cylinder shell and 

the ring are established under the action of edge moment and the edge shear force. The usual 

approach is to assume the bending moment and the shear force as unknown variables and to utilize 

the two unknown variables to express the displacement and rotation angle equations of the cylinder 

shell edge, then to impose the compatibility conditions of deformations to solve the two unknown 

variables. Finally, analytical solutions of the displacement, rotation angle and stress components of 

the thin-walled cylinder shell edge are obtained, as can be seen in many literatures [6-14]. Such a 

stress analysis method not only takes into account discontinuous stress generated from the junction 

between cylinder and flange but also makes up for the drawbacks in ASME design method. 



However, the cylinder part of the subsea connectors’ hub structure is comparatively large and thick, 

and a simple application of the stress analysis method of cone neck flange is limited. Therefore, the 

axisymmetric bending of the thick-walled cylinder should be investigated under the action of edge 

moment and edge shear force, rather than the axisymmetric bending of thin-walled cylinder shells. 

Some recent literatures about functionally graded rotating thick-walled hollow cylinder with 

variable thickness [15-18] also have to develop new models to obtain the analytical stress on the 

basis of thin wall-walled shell theory. 

The space axisymmetric bending deformation theory is usually applied to the calculation of 

axisymmetric bending deformation of the thick-walled cylinder. The space axisymmetric bending 

deformation is one of classical elastic mechanics problems. The solution method of this 

deformation is generally finding a displacement function which is suitable to the bi-harmonic 

equation. Iyengar and Yogananda [19], Malova et al.[20], Vendhan and Archer [21], Ogaki and 

Nakajima [22], Chandrashekhara and Kumar [23], Li et al. [24], Ren [25], Zhu and Redekop [26], 

Chau and Wei [27], Meleshko and Tokovyy [28], and Wu et al. [29] have implemented such a 

method for solving practical engineering problems. The simplified models of these problems are all 

space axisymmetric bending deformations, and the axial stress boundary conditions of axial section 

is assumed to meet with some certain function distribution, and the shear stress is neglected. 

However, the axisymmetric bending deformation of the thick-walled cylinder of subsea connector 

is forced by the action of the edge load and edge shear force, and the shear force on the axial cross 

section will also take its effect. The above mentioned methods of solving such problems of 

axisymmetric bending deformation of thick-walled cylinder could not be simply applied when the 

shear force on the axial section could not be neglected. 

To address the difficulties of the design of hub structural wall thickness in solving the problem 

of axisymmetric bending deformation of thick-walled cylinder under the action of the edge load 

and edge shear force, this paper will propose a new analytical model by critically analyzing the 

deformation theory of thin-walled cylinder shells. Taking the effect of the wall thickness into 

consideration, the geometric equations, the constitutive equations, the physical equations and the 

equilibrium equations are developed to obtain the displacement analytical solution of hub 

structure’s thick-walled cylinder. Then the deformation continuity relationship between the 

thick-walled cylinder and the hollow annular plate is established, and the analytical solutions of 

internal forces, displacements, rotation angles and stress components are acquired accordingly.  In 

this way, the analytical solution of the thick-walled cylinder axisymmetric bending deformation 

will be acquired under the action of edge loads. This analytical method is verified by FEM model, 

and a comparison investigation is made between the analytical method and ASME design method. 

 

2 Methodology 

2.1 Overview on the ASME Design Method 

In the ASME design method, the hub structure is simplified into two parts, i.e. the thick-walled 

cylinder and the hollow annular plate (shown in Fig.5). Firstly, the internal loads, i.e. edge bending 

moment HM and edge shear force HQ , on the joint section are calculated. Then the stress 

components are calculated by the internal loads, and finally the wall thickness parameters’ design 



ranges are determined according to the strength criteria. 
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Fig. 5 Mechanics analysis on the hub structure 

 

(a) Solutions to Internal Loads 

    The calculation methods of the edge moment
HM and edge shear force

HQ are expressed as: 
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where, is regarded as the correlation coefficient of total moment
0M (

0M is the total rotational 

moment on hub, and the calculation method can be seen in Appendix A.) and edge moment
HM ; ,

g ,and hI can be expressed as: 
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In the pre-loading state, the edge loads can be expressed as Eq.(6) and Eq.(7) by replacing 

0M by 0yM in Eq.(1) and Eq.(2).  
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(b) Stress Components Calculation 

      1) Section a a  

In operation state, the axial stress is superposed by the axial tension stress generated from the 

action of pressure on section a a and the bending stress caused by the edge bending moment
HM . 
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In the pre-loading state, the axial stress is caused by the edge bending moment yHM . 
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In the operation state, the hoop stress can be expressed by éLam equations with the hub’s 

cylinder being regarded as thick-walled cylinder. Therefore the maximum hoop stress can be 

expressed as: 
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In the pre-loading state, the hoop stress is equal to 0. In the operation state, the shear stress is 

caused by the edge shear force
HQ . The maximum shear stress is assumed as the 1.5 times of the 

average value in the calculation. 
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In the pre-loading state, the shear stress can be expressed as: 
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2) Section b b  

    In the operation state, the shear stress is caused by the axial force
1F . The maximum shear 

stress is assumed as the 1.5 times of the average value in calculation. 

2

2

1 4

0.25 ( )
1.5

( 2 )

 




 




G a a b

b

a

D F D p p

D g h
                   (13) 

where, the calculation method of
2F can be seen in Appendix A.  

In the pre-loading state, the shear stress can be expressed as: 
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where, the calculation method of 2yF  can be seen in Appendix A.  

(c) Design Criteria  



   The shear force should not exceed 0.6 times of the materials’ yield stress. The axial stress 

should not exceed the materials’ yield stress. The hoop stress should not exceed two thirds of the 

yield stress. The specific design criteria are shown in Table 1. 

 

Table 1 Design criteria for various stresses of flange for hub structure 

Stress components  Design criteria 

axial stress
oa and yoa on section a a  s  

the maximum hoop stress
max on section a a  /1.5s  

the maximum shear stress
a and ya on section a a  0.6 s  

the maximum shear stress
b and yb on section b b  0.6 s  

 

With the above strength design criteria, the value ranges of the key parameters 1g and 2g can be 

determined by combining equations ranging from Eq.(8) to Eq.(14). 

 

2.2 The New Model with Solutions: Stress Analytical Method (SAM) 

A stress calculation model is shown in Fig.6, and the hub structure is also simplified into two 

parts, i.e. the thick-walled cylinder and the hollow annular plate. Based on the axisymmetric 

bending deformation theory of thin-walled cylinder shell, the mechanics analysis models are 

established for the thick-walled cylinder and hollow annular plate under the action of axisymmetric 

edge bending moment and edge shear force. This simplified approach is similar to the calculation of 

stress distributes of pressure vessels with a cylindrical shell and a head shell [30-31]. Through the 

deformation continuity conditions, the analytical solutions to internal forces, displacements, 

rotation angles and stress components are acquired. This method is called stress analytical method 

(SAM). And the specific process of SAM will be presented as follows: 
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Fig. 6 Simplified diagram of mechanics analysis model of hub structure 

Referring to the usual shell theory coordinates, the directions of r and z are shown in Fig.7. 

The directions of various forces and moments shown in Fig.8 are positive. 
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Fig. 7 Coordinates and cylinder geometry        Fig. 8 Infinitesimal element of cylinder shell 

 

(1) Geometric Equations 

Considering the geometric equations of a thin-walled cylinder shell and the influence of wall 

thickness, the hoop strain  and the axial strain
z can be expressed as:  
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where, ( ) / 4b aR D D  , r is the radial coordinate, [ 2, 2]r t t  . In the axisymmetric bending 

deformation theory of thin-walled cylinder shell [32-34], the expressions of   is without the 

symbol r, which means the influence of wall thickness is neglected. 

 

(2) Constitutive Equations 

Referring to éLam theory solution of thick-walled cylinder, the radial stress can be expressed 

as: 
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The strain components can be expressed as: 
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Combining Eq.(15) with Eq.(17) leads to the expressions of stress components by the 

displacement components : 
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(3) Physical Equations 



With the geometric equation and constitutive equation, the relation between internal loads and 

displacement components can be expressed as: 
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4H are omitted in constitutive equations. 

 

 (4) Equilibrium Equations 

The equilibrium equations can be expressed as: 
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With three equilibrium equations and four physical equations, the equation set was developed 

for the axisymmetric bending deformation theory of thick-walled cylinder under the action of both 

internal and external pressures. In the equation set, there are seven unknown quantities and seven 

equations, so a unique solution can be obtained. By solving these equations, one obtains the 

displacement component, rotation angle and stress components. 

According to Eq.(23), the axial force zN  is constant. Assuming zN N , one can get 
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According to Eq.(19), one can get 
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Substituting Eq.(26) into Eq.(28), one can get 
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Substituting Eq.(26) into Eq.(21), one can get 
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According to Eq.(24), Eq.(25), Eq.(29), and Eq.(30),one can get 
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By solving Eq.(31), the radial displacement component is expressed as: 
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The rotation angle is expressed as: 
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The stress components and the internal loads are expressed as follows : 
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Since the length of cylinder is much bigger than the radius, one can assume that the cylinder is 

semi-infinite length, so the radial displacement component can’t increase to infinity. Then
3A and

4A should equal to 0 in Eq.(32). The Eq.(32) will be changed as: 
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The Eq.(39) will be changed as: 
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The Eq.(37) will be changed as: 



 
1 2 2 2

1 1 2 1 2 2 2

2 2 2

2 2 1 1 2 2 2

[ ( 3 )( cos sin )

                   ( 3 )( sin cos )]

z

zQ De R A z A z

R A z A z

      

     


     

   
    

        (42) 

Assuming 
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can get expressions of the two coefficients

1A  

and
2A by the two unknown variables

eM and
eQ .  
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where,
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Then
Ru and

R on the section 0z  can be simplified as: 
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With the continuity requirements of displacements and rotation angles, one can solve the 

unknown quantities
eM and

eQ . The specific solving process is as follows: 

On the section 0z  , the radial displacement and rotation angle of hollow annular plate can be 

expressed as : 
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where, 10.5total e eM M Q T M   ,
 1 1 12 1 1 2 2( ) d dM F H Q h h F H    ,

1M is the bending moment 

generated from external loads. Here we assume that the radial displacement generated from ap , bp

and
eQ are far less than the radial displacement caused by rotation, and just consider that the 

bending moment totalM can affect the rotation angle and radial displacement.  

According to the continuity requirements of displacements and rotation angles, the following 

equation set is obtained by combining the Eq. (39), Eq. (40), Eq. (41) and Eq. (42). 
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In the equation set, there are two equations and two unknown quantities i.e. eM and eQ , so a 

unique solution can be obtained. After getting the solutions to eM and eQ , the analytical solutions to 

the internal force, the displacement, rotation angle and stress of the axisymmetric bending 

deformation of thick-walled cylinder under the effect of edge loads will be obtained by taking eM

and eQ into equations ranging from Eq. (34) to Eq. (44). 

After getting the analytical solutions of stress components, the strength checking criteria can 

be designated as Treca yield criteria or Mises yield criteria. Referring to the design criteria of 

ASME, the design criteria of SAM developed in this article are without adjustment for convenience 



to compare the designed parameters, as shown in Table 2. 

 

Table 2 Design criteria for various stresses of flange for hub structure in SAM 

Stress Type Design Criteria 

the maximum axial stress
z on the section a a  

s  

the maximum hoop stress  on the section a a  /1.5s  

the maximum shear stress 
1a eQ g  on the section a a  0.6 s  

the maximum shear stress
1 41.5b F h  on the section b b  0.6 s  

 

3 Validation and Discussions 

To evaluate the accuracy of stress analytical solutions of SAM, finite element modeling 

analysis is firstly adopted at the present stage as thick shell elements or solid brick elements can 

easily be used to model thick shells in the commercial finite software. A 2D axisymmetric finite 

element model is developed by using structural parameters of one certain subsea connector. The 

axial stress and hoop stress are calculated for the thick-walled hub structure with loading the forces 

shown in Fig.4(b). In contrast, the axial stress and hoop stress are also calculated by SAM. The 

stresses of various points on several selected sections are assigned as comparison indexes. 

3.1 Calculation model 

The subsea connector’s structural parameters (shown in Fig.9) are as follows:  

Hub structure: 0.27aD  m, t=g1=0.078m, g2=0.1m, 0.3GD  m, 1 0.11h  m, 2 0.035h  m,

4 0.119h T  m, 0.4H  m, 1 20  , 3 10  .
 

Gasket structure: 0.4386R  m, 0.05h  m. 
0.01  mm. 
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Fig.9 Subsea connector structural parameters 

The material parameters are as follows: the elasticity modulus of hub structure is 210GPa, the 

Poisson ratio of hub structure is 0.29, the yield stress s of hub structure is 310Mpa. The elasticity 

modulus of gasket ring structure is 205GPa, and the Poisson ratio of gasket ring structure is 0.305. 

The loading parameters are as follows: the inner pressure pa is 34.5Mpa, and the outer pressure 



pb is 15Mpa. 

Taking design parameters and material parameters of the gasket into Eq.(55)(shown in 

Appendix B), one can get 2.2b  mm, 
max 285.5p  Mpa, 986.6bF  kN/m. Then taking the three 

values into Eq.(52), Eq.(53), Eq. (58) and Eq.(59), the loads on each contact surface will be 

acquired. Assuming the friction force between contact faces is neglected, namely
1 3 0   , we 

can get
1F =1635kN/m, 

1Q =288.3kN/m, 
2F =613.8kN/m, 

2Q =223.4kN/m, 
dF =1021.2kN/m. The 

five forces are loaded in SAM model for calculating the stress analytical solutions of thick-walled 

hub structure. The axial stress and hoop stress of eleven uniform-spaced points on four different 

sections, namely section a-a(z=0), section a1-a1(z=0.1m), section a2-a2(z=0.2m), and section 

a3-a3(z=0.3m), are concerned. 

In the FEM model shown in Fig.10, the hub structure is assumed as an elastic body, while the 

gasket structure is assumed as a rigid body. The interaction condition is set as frictionless 

surface-to-surface contact for the hub and the gasket. The boundary conditions are that 

displacements in all directions are fixed on the gasket. The forces, 
1F =1635kN/m, 

1Q =288.3kN/m, 

and
dF =1021.2kN/m, are loaded on corresponding locations and the pressure, pa and pb, are loaded 

on corresponding surface. In this way, the reaction forces on hub structure produced by gasket 

structure,
2F and

2Q , are ensured to be 613.8kN/m and 223.4kN/m respectively, which means
2F and

2Q are equivalently loaded on hub structure indirectly. The purpose of this approach is to guarantee 

that the loads in FEM model are the same as SAM model. Similarly, the axial stress and hoop stress 

of eleven uniform-spaced points on four different sections, namely section a-a(z=0), section 

a1-a1(z=0.1m), section a2-a2(z=0.2m), and section a3-a3(z=0.3m), are obtained and compared 

with those in SAM model. The consistency between SAM and FEM are investigated according to 

the comparison of stress values. 

 

  

  
 Fig.10  Loads and constrain conditions of FEM 

In order to assess the adaptations to various wall thickness parameters for SAM model, 

changes of wall thickness parameter t are made with the changeless of inner diameter Da. Therefore, 

a new parameter k is defined as the ratio of outer diameter Db and inner diameter Da, namely

 2b a a ak D D D t D   , which can represent the change of wall thickness t. The various values 

of k are listed in Table 3. As the value k is approximate 1.6 for the specific hub structural 

parameters shown in Fig.8, the value k is regarded as 1.6, so the condition k =1.6 is not listed in 

Table 3. The load dF will change with the changes of wall thickness t, as well as 1F and 1Q . Therefore, 

several groups of loads and wall thickness parameters under the various value conditions of k are 



listed Table 3. 

 

Table 3  Various k and corresponding wall thickness parameters and loads 

k T (m) g2 (m) Fd (kN/m) F1 (kN/m) Q1 (kN/m) 

1.3 0.04 0.138 1146.4 1760.2 310.4 

1.4 0.054 0.124 1096.9 1710.7 301.6 

1.5 0.068 0.11 1051.4 1665.2 293.6 

1.7 0.095 0.083 973.6 1587.4 279.9 

1.8 0.108 0.07 940.1 1553.9 274.0 

 

3.2 Results discussion 

Axial stress and hoop stress of various points on several sections are compared under the 

conditions that k=1.4, k=1.6, and k=1.8, as shown in Fig.11, Fig.12, and Fig.13 respectively. The 

x-axis represents the different uniform-spaced points on section z=0, 0.1, 0.2, and 0.3, where 

r/t=-0.5 represents the outer wall point, and r/t=0.5 represents the inner wall point. 

The axial stress is regard as a comparison index to evaluate the consistency between SAM and 

FEM. As shown in Fig.11(a), the axial stress of outer wall point on section z=0 calculated by SAM 

has little difference with the one by FEM and the error is about 8Mpa, while the axial stress of inner 

wall point on section z=0 calculated by SAM is distinguished from the one by FEM with a larger 

error value of 81Mpa. Taking the stress value calculated by FEM as standard, the relative error of 

stress value of inner wall point by SAM is equal to 4% with a high consistency. The absolute value 

of axial stress of inner wall point calculated by SAM is close to that of the outer wall point with an 

error value of 20Mpa, but the absolute value of axial stress of inner wall point calculated by FEM is 

far from the one of outer wall point with an error value of 110Mpa. The reasons are that SAM is 

deduced on the basis of thin walled shell bending deformation theories, in which the radial 

displacement 
ru is assumed as one specific value on the whole section and is only correlation with 

z, the calculation formulas of axial stresses is originated from displacement solutions, and the main 

adaption of SAM is modifying geometric and constitutive equations to take the changes of 

curvature radius on different position r into account, so the stress values calculated by SAM on 

inner wall point and outer wall point may be close. However, in the FEM model, the outer wall 

point on section z=0 is in the geometry discontinuity region, but the inner wall point is in the 

geometry continuity region, so the stress concentration phenomenon will occur on the outer wall 

point after loading external forces and the stress on outer wall point will inevitably exceed the inner 

wall point to a great extent. With the above illustrations, one can easily understand why the axial 

stress of outer wall point calculated by SAM and FEM are approximate but the axial stress of inner 

wall point shows a huge difference. On section z=0, the axial stress of outer wall point is a tension 

stress, but the axial stress of inner wall point is a compressive stress. The maximum stress of the 

whole section is on the outer wall point, so the outer wall point is the dangerous point on the 

section z=0. Although there is a large difference in the stress of inner wall point between FEM and 

SAM, the stress of outer wall point calculated by SAM is consistent with the one calculated by 

FEM. Fortunately, the outer wall point is the dangerous point of the whole section and the 

dangerous point is concerned once checking the structural strength, so the SAM model can provide 

helps to rapidly calculate the stress value of the dangerous point and quickly determinate 

rationalities of the design parameters. On the three sections z=0.1, z=0.2 and z=0.3, the stresses of 



outer wall point calculated by SAM and FEM are nearly close with a maximum error value of 

3.8Mpa, as well as the stresses of inner wall point. As the values of z increase, the calculation error 

of SAM will decrease. As shown in Fig.12(a) and Fig.13(a), similar regulars can be obtained that 

the error of the axial stress of inner wall point by SAM is large but the one of outer wall point is 

small, the stress value of the dangerous point calculated by SAM is consistent with the one 

calculated by FEM, and the calculation error of SAM will decrease once the section is away from 

z=0. 

The hoop stress is also regarded as a comparison index to evaluate the consistency between 

SAM and FEM. As shown in Fig.12(b), the error of the hoop stress of the outer wall point on 

section z=0 calculated by SAM is about 13Mpa and the one of the inner wall point is about 17Mpa. 

On section z=0.1, the error of the hoop stress of the outer wall point calculated by SAM is about 

21Mpa and the one of the inner wall point is about 12Mpa. On the two sections z=0.2 and z=0.3, 

the hoop stresses of outer wall point calculated by SAM and FEM are nearly close with a maximum 

error value of 10Mpa, as well as the stresses of inner wall point. In general, the error of the hoop 

stress calculated by SAM is acceptable. As the values of z increase, the calculation error of the hoop 

stress calculated by SAM will decrease. As shown in Fig.13(b), similar regulars can be obtained 

that the hoop stresses of outer wall point calculated by SAM is consistent with the one calculated 

by FEM as well as the stresses of inner wall point. However, it can be seen from Fig.11(b) that the 

error of the hoop stress of the inner wall point on section z=0 calculated by SAM is about 26Mpa 

but the one of the outer wall point is relative large with a value of 45Mpa. Apparently, on the 

condition of k=1.4, the error of the hoop stress of outer wall point by SAM is unacceptable in a 

certain degree, which reminds some limitations may exist in the SAM as for various wall 

thicknesses. Therefore, several groups of k, varying from 1.3 to 1.8, are set and the corresponding 

calculation models are developed to investigate the possible limitations of SAM.  
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Fig.11(a) Comparison of axial stress on various 

sections when k=1.4 

Fig.11(b) Comparison of hoop stress on various 

sections when k=1.4 
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Fig.12(a) Comparison of axial stress on various 

sections when k=1.6 

Fig.12(b) Comparison of hoop stress on various 

sections when k=1.6 
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Fig.13(a) Comparison of axial stress on various 

sections when k=1.8 

Fig.13(b) Comparison of hoop stress on various 

sections when k=1.8 

 

As shown in Fig.14(a) and Fig.14(b), the axial stress of various points on section z=0 

calculated by SAM is compared with the one calculated by FEM on different conditions of k. It can 

be seen that the error of the axial stress of the outer wall point calculated by SAM is about 66Mpa 

when k is equal to 1.3. Taking the stress value calculated by FEM as standard, the relative error 

value of axial stress of outer wall point by SAM is equal to 28.6%. However, the error of the axial 

stress of the outer wall point will fall down to 23Mpa and the relative error value is less than 20% 

once the value of k is more than 1.4. Assuming the relative error value of 20% can be accepted in 

view of engineering problems, the axial stress values of the dangerous point calculated by SAM 

and FEM are consistent. Therefore, as for predicting the maximum axial stress, the recommended 

application limitation of SAM is1.4 1.8k  . As shown in Fig.15(a) and Fig.15(b), the hoop stress 

of various points on section z=0 calculated by SAM is compared with the one calculated by FEM 

on different conditions of k. It can be seen that the error of the hoop stress of the outer wall point 

calculated by SAM is about 94Mpa and the relative error value is equal to 48.6% when k is equal to 

1.3. On the condition of k=1.4, the error of the hoop stress of the outer wall point calculated by 

SAM is about 45.3Mpa and the relative error value is equal to 31%. When the value of k is more 

than 1.5, the error of the hoop stress of the outer wall point will fall down to 23Mpa and the relative 

error value is less than 18.1%, which are acceptable. Therefore, as for predicting the maximum 

hoop stress, the recommended application limitation of SAM is1.5 1.8k  . Taking both the two 

comparison indexes of axial stress and hoop stress into consideration, the recommended application 



limitation of SAM is regard as1.5 1.8k  with the calculation models developed in this paper and 

the acceptable relative error value of 20%.  
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Fig.14(a). Comparison of axial stress on section 

z= 0 when k=1.3,1.5 and 1.7 

Fig.14(a). Comparison of axial stress on section 

z= 0 when k=1.4,1.6 and 1.8 
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Fig.15(a). Comparison of hoop stress on section 

z= 0 when k=1.3,1.5 and 1.7 

Fig.15(b). Comparison of hoop stress on 

section z= 0 when k=1.4,1.6 and 1.8 

 

3.3 Design method comparison 

The axial stress data of the equally spaced points along the section a a are shown in Table 4. 

Since the value of the axial stress or hoop stress obtained from ASME method is the maximum, the 

data in the first two columns are null value in Table 4. Taking the maximum axial stress value of 

136.9 Mpa in FEM calculation results as a reference, the axial tension stress calculated by SAM is 

157.7Mpa and the error value is +20.8 Mpa, while the axial tension stress calculated by ASME 

method is 122.7Mpa and the error value is -14.2 Mpa. The two error values are nearly consistent, 

and the advantages between SAM and ASME method cannot be distinguished easily by the error 

value. If the maximum axial tension stress value is adopted to check the structural strength for the 

wall thickness design parameters, SAM will be more conservative than ASME method, which will 

lead to designing a more reliable structure by SAM than by ASME method. What’s more, taking 

the maximum hoop stress value of 88 Mpa in FEM calculation results as a reference, the hoop 

stress calculated by SAM is 76.7Mpa and the error value is -11.3 Mpa, while the axial hoop stress 

calculated by ASME method is 30.7Mpa and the error value is -57.3 Mpa. Apparently, the error 

value in ASME method is larger than that in SAM. The advantage of SAM is more accurate in 

calculation of hoop stress than ASME method. Considering both the axial stress and hoop stress as 

comparison indexes, the security of the designed structure by SAM will be greatly improved.  



To sum up, the SAM not only can match well with the FEM calculation results but also make 

up the defects that ASME design method cannot accurately predict the hoop stress. Therefore SAM 

can be recommended as the design method for subsea connector’s hub structure with a thick-walled 

cylinder. This method can also provide theoretical guidance for the design of subsea connectors. 

 

Table 4 Contrast of stress on section z=0 

Point position 

on the section 

ASME design 

method (Mpa) 

SAM calculation results 

(Mpa) 

FEM calculation results 

(Mpa) 

z    
z    

z    

0.5t(inner wall 

point) 
- - -155.7 0.6 -56.0 17.9 

0.4t - - -124.1 7.7 -43.6 19.2 

0.3t - - -92.6 14.9 -31.5 20.6 

0.2t - - -61.1 22.4 -20.8 22.1 

0.1t - - -29.7 29.9 -10.8 24.0 

0 - - 1.6 37.5 -1.0 26.2 

-0.1t - - 32.9 45.2 9.2 29.0 

-0.2t - - 64.1 52.9 20.7 32.8 

-0.3t - - 95.3 60.8 35.1 38.6 

-0.4t - - 126.5 68.7 58.7 49.6 

-0.5t(outer 

wall point) 
122.7 30.7 157.7 76.7 136.9 88.0 

 

 

4 Concluding remarks 

An analytical model of the hub structure’s axisymmetric bending deformation is established in 

this paper, which can provide the solution to axisymmetric bending deformations of the 

thick-walled cylinder and the hollow annular plate under the action of edge bending moment and 

edge shear force. The displacement analytical solution to hub structure’s thick-walled cylinder is 

obtained by the deformation continuity relationship between the thick-walled cylinder and the 

hollow annular plate. The analytical solutions of stress components are acquired accordingly. This 

analytical method is called Stress Analysis Method (SAM). Through comparing the analytical 

calculation results of axial stress and hoop stress with FEM results, the consistency of SAM is 

evaluated. A case study is carried out to compare the differences between SAM and the ASME 

design method. The conclusions are made as follows: 

1) The stress analytical method developed in this paper solves the analytical calculation of the 

axisymmetric bending deformation and stress of thick-walled cylinder under the action of the edge 

bending moment and shear force, which can take into account the influence of thickness of the hub 



structure’s thick-walled cylinder.  

2) Considering both the axial stress and hoop stress as comparison indexes, the stress value of 

the dangerous point calculated by SAM is consistent with FEM results when the ratio of outer 

diameter and inner diameter of thick-walled cylinder is ranging from 1.5 to 1.8. 

3) In comparison with the ASME design method, the stress analytical design method can get 

the more detail results and check out the weak points on the section by calculating the stresses 

along the whole section. The advantage of SAM is more accurate in predicting the hoop stress. 

Through the SAM developed in this study, the analytical stress of the thick-walled hub 

structure will be obtained easily. The accuracy of SAM is validated by FEM model. In the future, 

the correlation experiment investigations are needed to improve the availability of SAM. 
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Appendix A  Flange Ring’s Total Bending Moment Calculation 

Method 

0M ,an equivalent moment, is the total moment acting on hub’s flange ring, which is applied in 

Eq.(1). The calculation method for
0M is to summate the vector moments on the action line of 

1F .

0M can be expressed as: 

0 2 21 1 2 1    G D D p R RM D F H F H M M M                  (50) 

where,
2F is the reaction of gasket ring on hubs, the distance of action point between axial force

1F and
2F is expressed as

21 20.5( )b GH D D g   ; 
DF is the equivalent axial force of pressure, 

and DF can be expressed as
2 ( ) 4D a a bF D P P  ; The equivalent acting line of DF is on the 

middle section of the thick-walled cylinder. 1DH is the distance of action point between 1F and DF , 

which can be expressed as
1 1 20.5( )DH g g  ; 4 2 4 2 2( )( )[0.5( ) ( )]p a a bM D h h P P h h h h      , 

pM is the eccentric bending moment, because the equivalent force
pF of 

aP and
bP is not through 

the centroid.

2 2

4 1 1 2

4 1 1 22( )

h g h g
h

h g h g





, h is the axial distance between hub shoulder ring centroid and the 

surface of hub shoulder ring;
 2 2 2( )R GM D Q h h  , 2RM is the moment generated from the force 

which is derived from the gasket ring in the horizontal direction;

1 2 3 3 1( ) tan( )( )R G DM D F F h h      , 1RM is the moment generated from the force which is 

derived from the claw in the horizontal direction. The unit of all the moments is N·m. 

In the pre-loading state, DF and pM are equal to 0 in the Eq. (50), and the subscript of other 

forces’ symbol will be added “y” to differ from the operation state. Finally, the total moment 0yM

can be expressed as: 

0 2 2 2 1y y yR yRM F H M M                          (51) 



In the above equations, the derivation process of calculation equations of
1F ,

1Q ,
2F and

2Q are 

shown in the reference [2], and only the specific calculation equations are listed as follows: 

 

(a) Sealing Loads
2F and

2Q  

    The loads
2F and

2Q in the operation state are given in the reference [2] as follows: 

 

1

2 1 1

1

0.5 2 ( )sin
= cos( )

cos

b a b

G

F h p p
F D


  



   
              (52) 

2 2 1 1tan( )Q F                             (53) 

where,
bF can be acquired from the contact model founded in in the reference[2], as shown in 

Eq.(54): 
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               (54) 

The explicit expression of b can be obtained by solving Eq. (54). Therefore the contact width, 

contact pressure and contact load can be directly calculated with the given design parameters, such 

as the compression amount , the distance between top contact point and bottom contact point

2h ,the radius of curvature R
, and the slant angle of sealing contact surface

2 . 
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                (55) 

where,
 

1

1 2

1

2

1

R E
m

E











, 2

2

2

cos

h
m


 , 1

3

12(1 )
m







, LambertW is a special function [35]. The 

Eq.(55) can be calculated directly in the MATLAB toolbox. 

The loads 2yF and 2yQ under the pre-loading state are also given in the reference [2] as follows: 

2 1 1

1

cos( )
cos

b

y G

F
F D  


                      (56) 

2 2 1 1tan( )y yQ F                           (57) 

(b) Locking Loads 1F and 1Q  

The loads
1F and

1Q under the operation state are given in the reference [2] as follows : 

     1 2

1 2 0.5 (1 0.5 ) ( )   a bF F R tR P P                  (58) 

1 1 3 3tan( )Q F                             (59) 

    Moreover, the loads 1yF and 1yQ under the pre-loading state are also given in the reference [2] as 

follows: 



1 2y yF F                              (60) 

1 1 3 3tan( )y yQ F                           (61) 

 

Nomenclature  

aD  Inner diameter of hub’s thick-walled 

cylinder , m 
bD  Outer diameter of hub’s thick-walled 

cylinder , m 

cD  External radius of hub’s hollow annular 

plate, m 
DD  Diameter of middle section of hub’s 

thick-walled cylinder, m 

GD  Diameter of the action position of
2F , m E  Elasticity modulus of hub structure, pa 

1E  Elasticity modulus of gasket structure, 

pa 
E  Equivalent elasticity modulus of gasket 

and hub structure, pa 

1F  Axial reaction force of the claw on hubs 

in operation state, N/m 
2F  Axial reaction force of the gasket ring 

on hubs in operation state, N/m 

bF  Contact force of gasket’s sealing 

surface, N/m 
dF  Equivalent unit axial force of pressure , 

N/m 

1yF  Axial reaction force of the claw on hubs 

in preloading state, N/m 
2yF  Axial reaction force of the gasket ring 

on hubs in preloading state, N/m 

DF  Equivalent axial force of pressure, N H  Height of hub’s thick-walled cylinder, 

m 

12H  Radial distance of action point between 

axial force
1F and

2F , m 
21H  Radial distance of action point between 

axial force
1F and

2F , 
21 12H H , m 

2dH  Radial distance of action point between

2F and
dF , m 

1DH  Distance of action point between
1F and

DF , m 

hI  Inertia of hub’s hollow annular plate 

relative to its neutral axis, m
4
 

0M  Total rotational moment on hub’s 

hollow annular plate, N·m 

1M  Bending moment generated from 

external loads of hub’s hollow annular 

plate, (N·m)/m 

eM  Axial bending moment of section a-a , 

(N·m)/m 

pM  Eccentric bending moment, N·m 
totalM  Total moment on hub’s hollow annular 

plate, (N·m)/m 

0yM  Total rotational moment on hub’s hollow 

annular plate in preloading state, N·m 
yHM  Edge bending moment in preloading 

state, N·m 

1yRM  Eccentric Moment generated from the 

horizontal force derived from the claw 

in preloading state, N·m 

2yRM  Eccentric moment generated from the 

horizontal force derived from the 

gasket in preloading state, N·m 

zM  Axial bending moment of the axial 

section of hub’s thick-walled cylinder, 

(N·m)/m 

HM  Edge bending moment in operation 

state, N·m 

1RM  Eccentric Moment generated from the 

horizontal force derived from the claw 

in operation state, N·m 

2RM  Eccentric moment generated from the 

horizontal force derived from the 

gasket in operation state, N·m 

M  Circumferential moment of the axial 

section of hub’s thick-walled cylinder, 

(N·m)/m 

zN  Axial force of the axial section of hub’s 

thick-walled cylinder, N/m 

N  Circumferential force of the axial 

section of hub’s thick-walled cylinder, 

N/m 

DP  Equivalent radial force of pressure , N 

1Q  Radial reaction force of the claw on 

hubs in operation state, N/m 
2Q  Radial reaction force of the gasket ring 

on hubs in operation state, N/m 

eQ  Shear force of section a-a, N/m 
1yQ  Radial reaction force of the claw on 

hubs in preloading state, N/m 



2yQ  Radial reaction force of the gasket ring 

on hubs in preloading state, N/m 
zQ  Shear force of the axial section of hub’s 

thick-walled cylinder, N/m 

HQ  Edge shear force in operation state, N R Radius of the middle section of the 

thick-walled cylinder, m 

R  Radius of curvature of the gasket’s 

sealing surface, m 

T Height of hub’s hollow annular plate, m 

b  Half of contact width of gasket’s sealing 

surface, m 
1g  Wall thickness of hub’s thick-walled 

cylinder, m 

2g  Wall thickness of hub’s hollow annular 

plate, m 

g  Radial distance from the bottom edge 

to the centroid of hub’s hollow annular 

plate, m 

h  Half of the distance between top contact 

point and bottom contact point of 

gasket, m 

1h  Distance between the action position of 

1Q  and the bottom edge of hub’s 

hollow annular plate, m 

2h  Distance between the action position of 

2Q  and the bottom edge of hub’s hollow 

annular plate, m 

4h  Height of hub’s hollow annular plate, m 

h  Axial distance from the inner wall to the 

centroid of hub’s hollow annular plate, 

m 

k  Ratio of outer diameter Db and inner 

diameter Da 

ap  Inner pressure, pa 
bp  Outer pressure, pa 

maxp  The maximum contact pressure of 

gasket’s sealing surface, pa 

T Wall thickness of hub’s thick-walled 

cylinder, t=
1g , m 

ru  Radial displacement , m 
zu  Axial displacement, m 

Ru  Radial displacement of section a-a on 

cylinder shell, m 

*

Ru  Radial displacement of section a-a on 

hollow annular plate, m 

1  Inclination angle of the contact surface 

of gasket and hub structure, rad 
3  Inclination angle of the contact surface 

of claw and hub structure, rad 

oa  Axial stress of section a-a in operation 

state, pa 
r  Radial stress, pa 

s  Yield stress of hub’s material, pa 
yoa  Axial stress of section a-a in preloading 

state, pa 

z  Axial stress, pa 
  Hoop stress, pa 

max  The maximum hoop stress of section a-a 

in operation state, pa 
a  Shear stress of section a-a in operation 

state, pa 

b  Shear stress of section b-b in operation 

state, pa 
ya  Shear stress of section a-a in preloading 

state, pa 

yb  Shear stress of section b-b in preloading 

state, pa 
z  Axial strain  

  Hoop strain   Poisson ratio of hub structure 

  Correlation coefficient of total moment

0M and edge moment HM  

  Rotation angle, rad 

R  Rotation angle of section a-a on cylinder 

shell, rad 

*

R  Rotation angle of section a-a on hollow 

annular plate, rad 

1  Frictional angle of the contact surface of 

gasket and hub structure, rad 
3  Frictional angle of the contact surface 

of claw and hub structure, rad 

1  Poisson ratio of gasket structure   Compression amount, m 
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